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Articles

Chemography: The Art of Navigating in Chemical Space

Tudor I. Oprea*,† and Johan Gottfries‡

EST Lead Informatics and Medicinal Chemistry, AstraZeneca R&D Mo¨ lndal, S-43183 Mo¨ lndal, Sweden

ReceiVed May 10, 2000

Combinatorial chemistry needs focused molecular diversity applied to the druglike chemical space (drugspace).
A drugspace map can be obtained by systematically applying the same conventions when examining the
chemical space, in a manner similar to the Mercator convention in geography: Rules are equivalent to
dimensions (e.g., longitude and latitude), while structures are equivalent to objects (e.g., cities and countries).
Selected rules include size, lipophilicity, polarizability, charge, flexibility, rigidity, and hydrogen bond capacity.
For these, extreme values were set, e.g., maximum molecular weight 1500, calculated negative logarithm of
the octanol/water partition between-10 and 20, and up to 30 nonterminal rotatable bonds. Only S, N, O,
P, and halogens were considered as elements besides C and H. Selected objects include a set of “satellite”
structures and a set of representative drugs (“core” structures). Satellites, intentionally placed outside
drugspace, have extreme values in one or several of the desired properties, while containing druglike chemical
fragments. ChemGPS (chemical global positioning system) is a tool that combines these predefined rules
and objects to provide a global drugspace map. The ChemGPS drugspace map coordinates aret-scores
extracted via principal component analysis (PCA) from 72 descriptors that evaluate the above-mentioned
rules on a total set of 423 satellite and core structures. Global ChemGPS scores describe well the latent
structures extracted with PCA for a set of 8599 monocarboxylates, a set of 45 heteroaromatic compounds,
and for 87R-amino acids. ChemGPS positions novel structures in drugspace via PCA-score prediction,
providing a unique mapping device for the druglike chemical space. ChemGPS scores are comparable across
a large number of chemicals and do not change as new structures are predicted, making this tool a well-
suited reference system for comparing multiple libraries and for keeping track of previously explored regions
of the chemical space.

Introduction
Combinatorial chemistry is a rapidly evolving technology

that has become a method of choice in drug discovery.1 Using
combinatorial chemistry, one can synthesize libraries of
compounds on the order of 102-109 structures.2,3 Initially,
the numbers game was advocated, i.e., maximize the number
of compounds synthesized in a given amount of time, then
screen that library for everything or anything using high
throughput screening (HTS). Today, most chemists agree that
big numbers and serendipity are not enough.4 As the range
of synthetic possibilities, as well as the number of com-
mercially available compounds, is increasing every day, the
process of compound selection and prioritization has become
crucial.5,6 Selection involves the evaluation of molecular
diversity, and a number of tools are available for this
process.7-10 The selection step is, so far, based onlocal
models of the potential reactants and/or reagents, from which
a subset is subsequently chosen.

The combinatorial problem of using amino acids as
building blocks for combinatorial chemistry was investigated
by Hellberg et al.11 Even though the syntheses were
constrained to using the 20 essential amino acids to yield
di- to penta-peptides as the products, this still resulted in
several thousands of possibilities. Rather than making vast
numbers of (similar) products, selection tools were devel-
oped11 via principal components analysis12 (PCA), using
appropriate descriptors. Following the pioneering work of
Volkhaard Austel in the design of experiments,13 this
approach addressed the selection step in a rational manner,
using D-optimal14 or factorial design15 for the subset of
peptides to be synthesized. As soon as an expansion of the
product space was demanded, i.e., when novel types of
R-carbon side chains were required for peptide synthesis (55
compounds in total), a new set of calculations and selections
had to be performed.16 This was later expanded with an
additional 32R-amino acids set, which were selected to
represent both intermediate and extreme physicochemical
properties, compared to the 20 essential amino acids.17

When existing models become inappropriate, novel de-
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scriptors and/or compounds must be included. These local
models need to be rederived after each expansion. Further-
more, local models are not easily amenable to comparison,
in particular when the descriptors used in the PCA models
are not similar. For example, the principal properties for the
amino acids17 derived by PCA cannot be directly compared
with the principal properties for heteroaromatic compounds,18

also derived by PCA. This problem is of increasing impor-
tance when comparing various compound libraries, for
example when one tries to fill in the diversity voids that exist
in the in-house compound collection.19 Such libraries, HTS
libraries in particular, may have millions of compounds. PCA
algorithms are relatively fast, but 105-106 rows by 100
column matrixes are rather difficult to handle, even for fast
computers.

Local models have several shortcomings:(i) predictivity
is limited by the distribution and chemical diversity of the
training set;20,21(ii) models need to be recalculated whenever
compounds are added or removedsin particular if the
external predictivity of the local model is deficient in
accuracy;(iii) by being local, such models are not easily
amenable to comparison with other models, even when the
same descriptors are used. There is a clear need forglobal,
rather than local models. The first barrier to overcome is
extrapolation, since it is the major source for recalculations
in the field of chemically related developments.22 One cannot
a priori predict what structures to include in the next synthetic
library. An ideal (global) model that would handle novel
compounds viainterpolation, not extrapolation, is rather
unlikely using the current methods.

We therefore suggest the termchemography, by analogy
with geography, as the art of navigating in chemical space.
Similar to the conventional mapping systems used in
geography, e.g., Mercator, chemography requires a standard
convention for chemical space navigation. In geography, the
existence of such conventional systems allows one to project
on the same plane various objects located on a geosphere.
Such conventions include a set ofrules (e.g., meridians and
parallels), and set ofobjects(e.g., mountains, cities, countries,
etc.). In chemography, the rules are provided by the principal
properties derived via PCA, whereas the objects are repre-
sented by molecular structures. In a manner similar to the
satellites used in the Navstar global positioning system23

(GPS), one can define a set of chemical structures intention-
ally located outside the chemical space of interest. For
medicinal chemistry applications, this would be represented
by the “druglike” chemical space (drugspace), i.e., the
chemical space occupied by druglike molecules.24,25 There-
fore, “satellite molecules” would be chemical structures
having at least one property value located outside the
property range defined by the known drugspace. The
ChemGPS procedure, introduced in the present paper,
provides a standard tool for compound selection within the
same PCA model using one training set, i.e., the ChemGPS
set. The principal properties of novel compounds are
predicted rather than recomputed, the same way as in local
model forecasting, e.g., via PCA score predictions. The
resulting ChemGPS scores provide a unique and potentially

standard metric for the chemical space and, as such, are
directly amenable to comparative analyses across chemistry
and time.

Materials and Methods

Chemical Structure Construction and Selection. Mol-
ecules with extreme properties were selected from in-house
and commercial databases, as described elsewhere.26 Virtual
molecules that represent objects with extreme properties, e.g.,
“hexazole”, a six-member nitrogen ring, were also included.
These structures are referred to as “satellites” since they are
located, in the principal property space, outside the drug-
space. Examples of satellite structures are, as shown in Figure
1: sucrose (1), glycerin (2), benzene (3), p-amidino-
benzamidine (4), the L-arginine tetramer (5), erythromycin
(6), theL-tryptophan tetramer (7), tetra-phenyl adamantane
(8), and the guanine nucleotide tetramer, GGG (9). A second
class of compounds, “core structures”, was required to
maintain the inner balance of the PCA model and to keep
the model focused on the drugspace. These compounds,
filling the core of the drugspace, were selected from a list
of known registered drugs by taking into account their
intestinal permeability properties (e.g., human intestinal
absorption27 above 10%), as well as other molecules patented
in drug-related applicationsssee Figure 2. Some of the
compounds intended for medical use were deemed as
satellites rather than core structures, according to their
properties (e.g., cyclosporine and methotrexate). For the sake
of simplicity, only S, N, O, P, and halogens were considered
as elements, besides carbon and hydrogen.

Molecular Descriptors. The following druglike properties
were considered as intuitive and were represented in our
molecular descriptor set: size, lipophilicity, polarizability,
charge, flexibility, rigidity, and hydrogen bond capacity.
Some of these have been chosen to match the QSAR
paradigm for structure-permeability correlations27 in an
effort to capture properties relevant to oral drug absorption.28

Size-related descriptors included molecular weight (MW),
the number of heavy atoms, the number of carbons, and the
calculated molecular refractivity, CMR.29 Polarizability was
estimated by CMR and by an atom-based polarizability
scheme30 implemented in SaSA.31 Flexibility and rigidity
were, in turn, estimated by counting the total number of
bonds and rings (RNG), the number of rotatable bonds
(RTB), and the number of rigid bonds (RGB)32 and by
several topological indices that estimate other properties33

as well, e.g., size. The Wiener, Balaban, Randic, and Motoc
indices, as well as the Kier and Hall suite of topological
descriptors, were used.34 Hydrogen-bonding capacity was
estimated using four HYBOT35 descriptors: HDOM, the
maximum free energy H-bond donor factor (Cd); HDOS, the
sum ofCd values; HACM, the maximum free energy H-bond
acceptor factor (Ca); HACS, the sum ofCa values. All Cd

values were given a positive sign, as previously suggested.36

In addition, we have used the simple count of oxygens,
nitrogens, H-bond donors (HDO), and H-bond acceptors
(HAC), as implemented in SaSA.31 Charge was estimated
by counting the positive (N_POS) and negative (N_NEG)
ionization centers, as well as the maximum positive and

158 Journal of Combinatorial Chemistry, 2001, Vol. 3, No. 2 Oprea and Gottfries



negative charge, as calculated using the Gasteiger-Marsili
method.37 Lipophilicity was estimated using two methods
that calculate the logarithm of the octanol/water partition
coefficient:38 CLOGP39 and ACDLogP.40 No missing values
were encountered during the implementation of the ChemGPS
training set (423 compounds). Overall, less than 1% of the
entire data set (over 22 000 compounds) exhibited missing
values, and in not more than two columns.

Statistics. All multivariate models were obtained using
PCA,12 as implemented in the SIMCA41 package. The
estimation of principal component (PC) significance was
performed by the cross validation (CV) procedure42 and
provided asQ2. The number of PCs in the ChemGPS model
was decided by CV, with the additional criterion that any
descriptor should load in at least one PC. The PCA modeling

was interrupted whenever a PC included only loadings from
descriptors that had already contributed high leverage in a
previous PC, despite significant CV-based contributions for
individual descriptors, which were not significant for the total
explained variance.42 The probability of the compounds to
belong to the model, PModXPS, was calculated41 in SIMCA.
All compounds with a probability of belonging of less than
5% (PModXPS< 0.05) were considered outliers, i.e., they
were significantly different from the compounds used to build
the model. Additional model validation, e.g., comparing local
vs global t-scores, was performed using the projections to
latent structures (PLS) method43,44implemented in SIMCA.41

PLS component significance was estimated by the CV
procedure42 and provided asQ2 (predictiveR2 according to
CV using seven randomized groups). The significance ofQ2

andR2 (fraction of explained variance) in QSAR models has
been discussed elsewhere.45

Because several thousands of compounds were predicted
as outliers in the initial stages, the task of selecting new
satellites had to be rationalized. Rational selection of novel
satellites and/or core structures by means of experimental
design was performed in order to avoid choosing too-similar
compounds as satellites (since these would appear as outliers
in previous ChemGPS models). Therefore, random selections
from large databases (e.g., ACD46 and MDDR46) were made,
and all descriptors were calculated for each selected com-
pound. ChemGPS scores were predicted, and the probability
of the compounds to belong to the ChemGPS model,
PModXPS, was calculated.41 All compounds with PModXPS
< 0.05 were submitted to a statistical molecular design47

analysis, i.e., selecting a subset via the D-optimal algorithm.
The outliers selected using the D-optimal criterion were

Figure 1. Typical satellites for drugspace.

Figure 2. Examples of core structures.
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individually scrutinized, then appropriate ones (see Figure
3) were included in a new version of the ChemGPS. This
procedure was iterated three times. In choosing a lower,
rather than larger, number of satellites, we have applied the
parsimony principle (“less is better”).

Results and Discussion

ChemGPSsA Heuristic Approach toward a Conver-
gent Prediction System.The objective of chemography is
to provide a consistent mapping device, namely the chemical
global positioning system, ChemGPS,48 that can avoid
extrapolations when positioning the properties of a new
arbitrary collection of leadlike or druglike organic molecules.
This can be achieved when the principal property space of
drugspace is well covered, on all parts, by relevant satellite
structures (Figure 1). As this was not the case in the initial
ChemGPS model, outliers, i.e., extrapolations, were detected
and analyzed. Outliers that held interesting extreme property
values in one or several directions were tested as new
putative satellites (as described in the Methods section), with
the aim to find appropriate molecules that would enhance
the ChemGPS coverage of the drugspace and yield a
convergent ChemGPS system. The appropriate outliers,
selected using the D-optimal criterion (see Figure 3), were
included in new versions of the ChemGPS, which heuristi-
cally approached convergence in three steps, as described
in the previous section. Thus, the current ChemGPS model
can predict property positioning in chemical space without
extrapolation, as tested on over 22 000 compounds, of which
only 23 were deemed outliers according to the PModXPS
test (data not shown). We note that some of the outliers
depicted in Figure 3 were not included in the current
ChemGPS model (e.g., the polyfluorurated diol or the
n-alkyl-substituted steroid), whereas other structures are
currently included (e.g., the tetra-carboxylated thioether or
the periodic acid).

The present ChemGPS data set consists of 423 virtual and
existing structures (see Figure 4). The PCA modeling was
terminated at nine PCs, after inspection of CV and loading
vectors, as described in the Methods section. The present
set of compounds and descriptors can be used for clustering
overview (Figure 4) and property interpretation via the PCA
loading vectors, as visualized in Figure 5. Because core
compounds were deliberately selected to sample the chemical
space occupied by orally available drugs (e.g., human
intestinal permeability27 above 10%), these structurally
diverse compounds are not divided into major clusters but
are rather homogeneously distributed in chemical space.

The advantage of ChemGPS is that, within one chemo-
graphic metric, diverse compounds can be compared to each
other via simple prediction routines, in particular, in the area
of drug discovery. The chemical space map is expected to
evolve in time as more informative and complex descriptors
are included, in particular, those that are CPU-intensive today
but could be easily computed in the near future. As
ChemGPS is used to predict more and more compounds,
new outliers will be accumulated. By applying the statistical
molecular design procedure, novel satellites will be included
in future versions to improve the prediction accuracy. This
indicates that ChemGPS is sometimes subject to the same
shortcomings as local models, since PCA scores need to be

Figure 3. Selected tentative satellite compounds from those with
largest distance to the ChemGPS model (n ) 23).

Figure 4. Projection on the three most significant dimensions (t1,
t2, and t3, respectively) of the ChemGPS training set (satellites
and core structures) in red, Cephalosporines in blue, and heteroaro-
matic compounds in green.

Figure 5. Principal property translation into interpretable chemical
descriptors can be retrieved from the ChemGPS loadings, as
exemplified for the three most significant dimensions (t1, t2, and
t3, respectively).
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rederived once the internal list of objects (the training set)
has changed.

Combinatorial Chemistry Reagent Selection Using
ChemGPS. Reagent selection can be performed using
ChemGPS, as exemplified with a selection of monocarboxy-
lic acids. Principal properties for a random set of 8599
structures extracted from the ACD database46 were analyzed
using both local PCA (Figure 6A) and ChemGPS predictions
(Figure 6B). The shape of the cluster and the relative
positions of individual acids within the cluster are preserved
in both models (Figure 6A,B) for the first four dimensions,
as can be observed from the Figure 7. In addition to the
(expected) 1:1 correspondence between ChemGPS scores and
local PCA scores, a significant PLS model that links the first
six dimensions in the local model with the ChemGPS scores
is summarized in Figure 8. The fact that the global and local
dimensions are no longer correlated in the fifth (and higher)
dimensions can be rationalized as follows: both local and
global models capture relevant latent structures in the lower
dimensions (e.g., size, lipophilicity, flexibility). Higher
dimensions, however, are attributed different meaning (i.e.,
descriptors load differently) in global models, compared to
local models. More specifically, whereas all carboxylates
have the COOH moiety in common (not captured by the
local model), this is not true for the global model. Thus one

can expect that negative vs positive charges, or polarizability,
will be treated differently.

In ChemGPS, one can examine monocarboxylic acids and,
by extension, reagents in general by studying the ChemGPS
score in a global map of the chemical space. The first four
dimensions have a 1:1 relationship, when comparing local
(PCA) and global (ChemGPS-predicted)t-score values. Local
PCA models can be used for external prediction, in the same
way as the ChemGPS model. However, local model predic-
tions may be less trustworthy when switching from, e.g.,
carboxylic acids to amines, whereas ChemGPS scores are
directly comparable across different classes of compounds.
Thus, adding or removing compounds from the reagent list
does not influence the ChemGPS score prediction. This opens
up new possibilities for interactive reagent selection, e.g.,
pending on availability, price, purity, chirality, etc. By
contrast, local PCA models may need to be recomputed when
the composition of the compound set is changed.

Comparison to 3D-Based Principal Properties.A set
of 40 heteroaromatic compounds was multivariately char-

Figure 6. Principal properties for 8599 monocarboxylic acids, as
obtained from thet-scores of a local PCA that used the carboxylates
(A), and from the ChemGPS prediction (B).

Figure 7. Fraction of explained variance (R2) for the 1:1 correlation
between the predictedt-scores obtained with ChemGPS (marked
1G-9G), and thet-scores derived from the local PCA model
(marked 1L-9L), for the 8599 monocarboxylic acids. The first four
dimensions yielded significant correlations: 1L-1G (0.998), 2L-
2G (0.963), 3L-3G (0.873), and 4L-4G (0.74), whereR2 values
are given in brackets.

Figure 8. Summary of the six-components PLS model derived to
explain the first six (1L-6L) local PCA scores, using the nine (1G-
9G) scores from ChemGPS asX variables. For this model,R2X )
0.897,R2Y ) 0.894,Q2 ) 0.893, andN ) 8599.
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acterized18 using 13 descriptors derived by GRID.49 Four
principal properties were extracted from the initial GRID
data, the first two being graphically reconstructed in Figure
9A. Compared with the ChemGPS predictions (Figure 9B),
a similar map is obtainedsexcept for the apparent rotation
of the PCA solution in the PC1 and PC2 plane. Guanine, an
outlier in the first two dimensions, was excluded from the
final analysis by Clementi and co-workers,18 probably due
to errors in the GRID calculations50 (see also Figure 9A),
but was well integrated into the xanthine cluster according
to ChemGPS (Figure 9B). No significant 1:1 correspondence
between ChemGPS scores and GRID principal properties was
observed (data not shown). This is not surprising since, in
contrast to the monocarboxylates example discussed above,
a different set of molecular descriptors (i.e., GRID) was
applied to characterize the compounds in the original study.18

However, we found a significant PLS model that explains
the four principal properties in GRID (here, used asY
variables), starting from the global (1G-9G) ChemGPS
scores; see Figure 10 for details. This indicates that latent
structures specific for these heteroaromatic compounds are
well captured, albeit via different descriptors, i.e., 3D-based
in GRID vs 2D-based in ChemGPS. The need for three-

dimensional models appears to be less necessary for these
molecules, since they are all rigid and flat (aromatic) ring
systems.

Multivariate Characterization of R-Amino Acids. A set
of 87 amino acids was multivariately characterized17 using
26 descriptors. The five principal properties that were
extracted from the initial data were later validated in
quantitative sequence-activity models for elastase and
neurotensin analogues.17 The first two components of a local
PCA model for the 87 amino acids, using the same
descriptors as in ChemGPS, are shown in Figure 11A. The
ChemGPS training set contains 10R-amino acids: alanine,
arginine, cysteine, glutamate, glycine, histidine, lysine,
proline, serine, and tyrosine. However, these are included
in the ChemGPS prediction of the 87 amino acids (Figure
11B). A comparison between the local PCA model and the
ChemGPS predictions reveals a similar map, except for an
inversion in the second principal component (PC2).

No significant 1:1 correspondence between ChemGPS
scores and the amino acidz-scores (z1-z5) was observed
(data not shown). This situation is similar to the GRID-based
heteroaromatic compounds, as different descriptors were
applied to characterize the amino acids in the original study.17

However, we obtained a significant PLS model explaining
the first four amino acidz-scores (z1-z4, used asYvariables)
using predicted ChemGPS scores (1G-9G). The relationship
between thez-scores and the ChemGPS scores forR-amino
acids is shown in Figures 12 and 13. While the latent
structures specific for the amino acids appear to be suitably
well captured by ChemGPS, these global scores appear to
project differently at higher dimensions: BothR2 and Q2

exhibit lower values going fromz1 to z3, and fromz1 to z4,
respectively, whereasz5 could not be modeled (Figure 13).

Prediction of Novel R-Amino Acids. An external set of
20 amino acids was extracted from the ACD database, Figure
14. The cluster composition and relative positioning of these
20 amino acids are also reproduced in the PC2-inverted

Figure 9. Principal properties for 45 heteroaromatics, as obtained
from thet-scores of a local PCA model based on GRID properties
(A) and from the ChemGPS prediction (B).

Figure 10. Summary of the four-component PLS model derived
to explain the GRID principal property scores (PP1-PP4), using
the nine-dimensional (1G-9G) scores from ChemGPS asX
variables. For this model,R2X ) 0.881,R2Y ) 0.725,Q2 ) 0.602,
andN ) 44. Guanine was excluded from this correlation, since it
was classified as an outlier by GRID (see also Figure 9A).
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ChemGPS model, compared to the local PCA model predic-
tions, Figure 15. Among these 20 amino acids, none had
PModXPS below 5% in the ChemGPS prediction, whereas
17 compounds were deemed as outliers by the same test in
the local PCA model. This indicates that ChemGPS is well
suited for PCA score prediction for amino acids. A direct
comparison between the predictivity of the PCA model
proposed by Sandberg et al.17 and the ChemGPS model
was not possible, since the original PCA model contains
experimentally measured descriptors from thin-layer chro-
matography and NMR shifts, in addition to the calculated
variables.

General Comments. The present paper describes a
procedure that can provide useful and coherent chemical
compound property descriptions in a manner that is directly
amenable to deriving a global similarity metric. This metric
was validated by comparison to local models of (sub)grouped
clusters, 3D-based PCA models, and property profiling of
R-amino acids. The advantage given by chemographic tools
is the long-term perspective, since time-related comparisons
for individual compounds via ChemGPS predictions are
facilitated, which can greatly simplify the process of
compound collection enhancement. It may also provide a

unique reference system wherein the characterization of
molecules via different descriptors51 from various research
groups may become comparable.

One common feature with principal component analyses
is their occasional rotation. For example, when a minor
addition of objects is made, the loadings in two components
may shift and the result can be perceived as a rotation in the
scores.12 This was illustrated by the comparison between the
3D-based description from Clementi et al. and our ChemGPS
analysis for the same compounds (Figure 9A,B). In addition,
the local PCA on theR-amino acid example revealed a shift
in sign for the second PC with an apparent inversion along
the second PC in both score and loadings, compared to the
ChemGPS solution (Figure 11A,B). In the present study, we
show how one can avoid such problems by making use of a
reference training system (the ChemGPS data set) and
extracting the relevant latent structures for different mol-
ecules in a systematic manner, be it heteroaromatic com-
pounds (Figures 9 and 10) or amino acids (see Figures 11-
13). Thus, a major advantage from the analysis of the

Figure 11. Principal properties for 87R-amino acids, as obtained
from thet-scores of a local PCA model (A) and from the ChemGPS
prediction (B). Figure 12. Loading plot of the four-component PLS model derived

to explain the first four principal property scores of the amino acid
dataset (z1-z4, marked as red triangles), showing the relationship
betweenz1-z4 and the nine-dimensional scores from ChemGPS
(black triangles).
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ChemGPS loadings, as provided by a standard ChemGPS
molecular property estimation scheme, is the consistent
contribution from different properties to a certain PCA
dimension. In time, the familiarity with the ChemGPS
scheme will provide a direct and robust interpretability for,
e.g., compound library analysis and rational drug design.

Conclusion

Chemography, the art of navigating in chemical space,
attempts to address some of the shortcomings of local PCA
models, e.g., predictivity via extrapolation and model red-
erivation upon data set alterations. Chemography provides
a standard convention for chemical space navigation: A set
of rules (principal properties derived by PCA instead of
meridians and parallels), andobjects(molecular structures
instead of cities and countries). Similar to the Navstar23 GPS
satellite system, the ChemGPS method makes use of “satellite
molecules” intentionally placedoutsidethe druglike22,24,25,32

chemical space. ChemGPS provides a standard tool for
compound prediction within the same PCA model, using one
training set. ChemGPS preserves cluster characteristics
provided by local PCA models (as illustrated for a set of
8599 monocarboxylic acids, 45 heteroaromatics, and 87
R-amino acids), with the advantage of having a significantly
reduced number of outliers, when compared to local models
(as illustrated for a set of 20R-amino acids). ChemGPS
scores provide a standard metric for chemical space and are
directly amenable to comparative analyses across chemistry
and time.

Whenever latent structures are stable, they are reflected
by projection methods regardless of the descriptor choice

Figure 13. Summary of the PLS model of thez1-z4 amino acid
scores, using the nine-dimensional (1G-9G) scores from ChemGPS
asX variables. For this model,R2X ) 0.492,R2Y ) 0.773,Q2 )
0.576, andN ) 87.

Figure 14. Chemical structures of the 20R-amino acids used as
a test set.

Figure 15. Principal property prediction for the 20R-amino acids
used in the test set, as obtained from the local PCA model (A) and
from ChemGPS (B).
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(if relevant for the system). When compared to GRID (for
heteroaromatics) and toz-scores (for R-amino acids),
ChemGPS was shown to capture relevant information, that
is, amenable for direct comparison in a global manner. In
retrospect it seems natural that compound properties comprise
statistical self-similarity and perhaps even fractal dimen-
sions.52 This might be a significant reason for the apparent
usefulness of molecular diversity tools in research and
development activities that involve chemical structure op-
timization. Furthermore, ChemGPS is not limited to the
choice of descriptors (metric): For example, we have
successfully replaced the ChemGPS descriptors described
in this paper with VolSurf descriptors53 in order to obtain
consistent maps of the druglike chemical space starting with
pharmacokinetically relevant properties.54 With appropriate
training sets and descriptors, ChemGPS is likely to provide
standard chemographic metrics in any area (e.g., agrochemi-
cals, polymers, etc.) of chemical discovery.
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